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Abstract

The traveling salesman problem is an important combinatorial optimization problem due to its significance in academic
research and its real world applications. The problem has been extensively studied and much is known about its polyhedral
structure and algorithms for exact and heuristic solutions. While most work is concentrated on solving the deterministic
version of the problem, there also has been some research on the stochastic TSP. Research on the stochastic TSP has con-
centrated on asymptotic properties and estimation of the TSP-constant. Not much is, however, known about the proba-
bility distribution of the optimal tour length. In this paper, we present some empirical results based on Monte Carlo
simulations for the symmetric Euclidean and Rectilinear TSPs. We derive regression equations for predicting the first four
moments of the distribution of estimated TSP tour lengths using heuristics. We then show that a Beta distribution gives
excellent fits for small to moderate sized TSP problems. We derive regression equations for predicting the parameters of the
Beta distribution. Finally we predict the TSP constant using two alternative approaches.
© 2007 Published by Elsevier B.V.
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1. Introduction

The traveling salesman problem (TSP) is the
problem of identifying the minimum cost tour of n
pre-specified cities such that the salesman, starting
from an origin city, visits each of the cities exactly
once and then returns to the origin. TSP is an NP-
Hard problem and has been extensively studied.

Most researchers have focused their efforts on
obtaining optimal solutions to the TSP. In much of
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this research, the problem parameters are determinis-
tically known. Comparatively little research has been
done on stochastic versions of the problem. One area
that has received very little attention is the probabil-
ity distribution of optimal TSP tour lengths. Even
where such work exists, the attention has been on
the asymptotic case where the number of cities is infi-
nitely large. Some efforts have also been expended in
determining the value of the TSP constant.

Knowledge of the distribution of optimal tour
lengths is important for a variety of reasons. We list
below some cases in which such knowledge can be
useful:
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1. Service time estimation for traveling repairperson
models: In such models, a traveling repairperson
visits several customers. Depending on the appli-
cation, the traveling repairperson may visit the
cities on a first come first serve or, more com-
monly, will visit the customers according to a
TSP tour to minimize travel time. Examples of
such systems include equipment repairpersons,
pizza delivery, WebVan like grocery delivery,
social service providers etc. To determine service
time distribution in such systems, it is important
to know the amount of travel time that might be
required.

2. Simulation of traveling repairperson systems:
During simulation of traveling repair person
systems, it is often necessary to solve TSP prob-
lems to know the amount of time that a repair
person spends traveling. Knowledge of the dis-
tribution of the optimal tour length will sig-
nificantly shorten the run times for such
simulations.

3. Simulation and analysis of multi-modal Public
Transportation systems: Many urban areas are
experimenting with the idea of providing public
transportation using a main arterial train/tram
system which would be fed by a dial-a-ride taxi
or van system. In this case the taxi tours are often
modeled as TSP tours and knowledge of the tour
lengths would greatly simplify the analysis of
such systems.

In most of these instances the number of stops in
the tour is a small. It is typical for traveling repair-
persons to make between 15 and 20 stops. However,
depending on the application the number of such
tours may be as large as a few hundred.

For many of these applications, the city areas
covered tend to be of irregular geometric shapes.
However, service districts for traveling repairmen
are often imposed on the cities and such zones are
usually laid in the form of grids making it possible
to consider square and or rectangular service areas.
It may also be possible to break up the service area
into square sections, so that the resulting TSP tour
can be considered as the aggregation via a process
such as sub-tour patching of a number of indepen-
dent sub-tours. In this later case, the resulting tour
is clearly a heuristic solution to the problem. This
approach of decomposition into smaller square
areas would also allow the modeling of non-homog-
enous regions in which the demand is not uniformly
distributed over the region of interest. In this paper

we concentrate on randomly generated homogenous
unit square areas.

The primary purpose of the paper is to provide
distributional results for small to medium traveling
salesman problems drawn from a unit square. We
give empirically fitted distributions for the optimal
tour lengths estimated using heuristics and regres-
sion equations for the first four moments of the dis-
tribution. We also use our empirical studies to
estimate the TSP constant. We consider both
Euclidean and Rectilinear TSP problems.

2. Literature review

The Traveling Salesman problem has been exten-
sively studied in the literature. An excellent survey
of this research is the book by Gutin and Punnen
(2002), which covers research on a variety of differ-
ent aspects and variations of the problem. The prob-
lem of obtaining the expected length of the shortest
Hamiltonian cycle through n random points in a
two dimensional region has been considered by sev-
eral researchers. Mahalanobis (1940) estimated the
expected length of the shortest path through n
points in any region to be (v/n—1/+/n). Marks
(1948) obtained a lower bound for the expected
length as \/A/2(y/n —1/y/n), A being the area of
the region from which the points are drawn. Ghosh
(1951) gives an empirical result of 1.266 /4, for the
expected length of the shortest path. Few (1955)
gave an upper bound on the shortest distance con-
necting n points in a 1x 1 square of (v2n + 1.75).
A bound of (v2n+o(+/n)) was rediscovered in
1983 by Supowit et al. Karloff (1989) improved this
bound to 0.984(v/2n + 11).

The seminal paper in this area is the one by
Beardwood et al. (1959). In this paper they present
some asymptotic results on the expected value of
the shortest distance among n points using tours
that they constructed by hand for a 202 and 400 city
instance. They estimated the expected length of
the optimal tour found for a random uniform distri-
bution of n points over a rectangular area R
given by L.(n,R) = Kv/nR. K is estimated to be
0.75. Here K is defined as frpv2 where frsp
is the TSP constant defined by frep(f) =
lim, ... L(n, t)/(n“=V/* . \/t) where n is number of
points and ¢ is the dimension. Since then many
researches using varied methodologies, have given
different estimates of the TSP constant. Bonomi
and Lutton (1984) quote the value of K=0.749
for large n. Based on computer experiments with
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more sophisticated heuristics, Stein (1997) estimated
the constant to be 0.765. In recent years many
researchers have realized that these figures are over-
estimates. Ong and Huang (1989) reported that a
version of 3-Opt yielded normalized tour lengths
converging to 0.74. Krauth and Mizard (1989) use
the cavity method to predict the TSP constant to
be 0.7257. Fiechter (1994) using a “parallel tabu
search” algorithm observed normalized tour lengths
converging to 0.721. Lee and Choi (1994) use a
“multicannonical annealing” algorithm to obtain
normalized tour lengths converging to 0.721. Nor-
man and Moscato (1995) in their research imply a
value of 0.7148 based on the “MNPeano” constant
which is related to a fractal space-filling curve. The
most current estimate (K = 0.7124), based on com-
puter simulation and » = 1000, is due to Johnson
et al. (1996). Percus and Martin (1996) using an
independence assumption give 0.7120 for the TSP
constant which matches the value obtained by John-
son et al. (1996).

It is important to note that our work differs from
the work on statistical inference to obtain point and
interval estimates for the optimal solution (e.g.
Golden and Alt, 1979; Los and Lardinois, 1982).
In that stream of research, the idea is to find a con-
fidence interval for the optimal solution of a given
instance of the TSP. The approach there is to sam-
ple the n! tours associated with the given instance to
estimate the optimal solution. Our interest is in find-
ing the distribution of the optimal solution for uni-
formly generated problems.

The paper is organized as follows. In Section 3
we discuss the methodology used in obtaining the
empirical results for TSP tours. In Section 4 we
present the results and some of the insights that
can be drawn from them. In Section 4.1 we discuss
the empirical model for the different moments and
validate it. In Section 4.2 we report the different
parameters of the hypothesized distribution and
the goodness-of-fit results. In Section 4.3 we calcu-
late the value of the TSP constant using two
approaches. Finally in Section 5 we present our
conclusions.

3. Methodology

Previous researchers have used different methods
to come up with their estimate of the TSP constant.
Some have used the Monte Carlo techniques while
some others have used statistical mechanical argu-
ments. In this research, we generate large numbers

of random instances of the TSP problem. The co-
ordinates for the cities are drawn randomly from a
I x 1 square. We implemented the Marse and Rob-
erts (1985) random number generator. This genera-
tor generates 100,000 random numbers for each
given stream. For different values of n (number of
cities) several random instances of the problem are
generated. The length of both the Euclidean tour
as well as the Rectilinear tour is approximated using
Helsgaun’s implementation of the Lin-Kernighan
heuristic algorithm (Helsgaun, 2000). Johnson and
McGeoch (2002) show that the solutions from this
implementation are typically very close to optimal.
For problems with 1000 cities they found the solu-
tion to be on average 0.9% from the optimal.

For the purpose of analysis we broke the TSP
runs into 9 batches of 4000 TSP’s, which totals
36,000 TSP’s for each n. The maximum number of
points that we considered were n = 2000 for which
we solved only 1034 TSP’s as we observed a marked
reduction in the variance as n increased. This is in
line with the observation of Johnson et al. (1996).
Of the 9 batches we used one batch to estimate
parameters for the hypothesized distribution tests
and the other 8 batches for testing the goodness of
fit and regression Table 1.

We then divided the data into groups consisting
of 500 points for each value of » and fit a regression
line through them. The standard basic steps for dis-
tribution fitting were used. This gave us an estimate
of the parameters of the line. Repeating this with the
entire set of data gave us E(f), which due to the
unbiased property of the optimized least square
(OLS) estimator is an estimate of . A similar
approach was used for all the moment equations —
only the hypothesis was different.

For the distribution we hypothesized a Beta dis-
tribution based on our preliminary study and the
use of Stat:fit software. We then estimated the
parameters of the Beta distribution using the mean
and the variance values obtained from our Monte

Table 1
Number of instances for each problem size

Number of points Number of TSP instances

11-50 36,000
51-99 (every alternate) 36,000
100-150 (every 5th) 36,000
160-200 (every 10th) 36,000
1000 1768
1500 1344
2000 1034
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Carlo simulation of the problem. A Beta distribu-
tion in the range (0,1) is represented by B(oy,a5)
where o and o, are the shape parameters of the dis-
tribution with «; and a, both greater than zero. The
scaled mean and scaled variance of the Beta distri-
bution is given by Egs. (1) and (2), where x and ¢”
are the mean and the variance, respectively.

Mean: p = o /(o1 + o), (1)
Variance: 0'2 = OC]OCQ/(OCl + 062)2(1 + oy + O(z). (2)

It is important to note that the parameters o and
o, of the Beta distribution are obtained using the
scaled mean and the scaled variance. To scale the
distances in the (0, 1) interval, knowledge of both
the lower as well as the upper bound is required.
The lower bound in all the cases has been assumed
to be zero. The value for the upper bound required
some more analysis. While Few (1955) gives an
upper bound, this upper bound is clearly loose
and using this bound will lead to a poor fit. For lar-
ger values of n (100 or more) our initial analysis had
indicated that the Normal distribution was a rea-
sonable fit. If the distribution had been a Normal
distribution we would have been justified in using
a bound of p+ 36. However, for smaller values
the Normal does not give a good fit. We interpo-
lated between u+ 36 and Few’s bound to find a
value for the upper bound that gave the best fit
for our observed data. The upper bound was thus
given by by, — k(brew — it — 30). The selection of a
value for k is discussed in the results. Solving Egs.
(1) and (2) gives estimates for «; and oy.

The distributions were then tested using standard
tests namely the chi square test, Kolmogorov—Smir-
nov (K-S) test and the Andersen Darling test to
check for the validity of the hypothesized distribu-
tion. Chi-square tests are the oldest goodness-of-fit
tests, and may be thought as a more formal compar-
ison of a histogram or a line graph with the fitted
density or mass function. The K-S tests, on the
other hand, compare an empirical distribution func-
tion with the distribution function of the hypothe-
sized distribution. This test generally seems to be
more powerful than the chi-square test against

many alternative distributions. One possible draw
back of the K-S tests is that they give the same
weight to the difference |F,(x) — F(x)| for every
value of x, where F,(x) and F (x) are the empirically
observed and theoretical distributions, respectively.
The Anderson-Darling (A-D) test is designed to
detect the discrepancies in the tails and has higher
power than the K-S test against many alternative
distributions.

A regression was also fitted with &; and &, as the
dependant variables and » as the independent vari-
able. The estimates &; and &, are used to predict
the value of the TSP constant. The results of the
analysis are discussed in Section 4.

4. Results

In this section the results of the analysis are pre-
sented and discussed. This section is further subdi-
vided into Sections 4.1, 4.2 and 4.3. In Section 4.1
we present the empirical results of the four moment
equations based on regression. In Section 4.2 the
results of the distribution tests as well as the regres-
sion equations for the distribution parameters are
presented and in Section 4.3 we calculate the value
of the TSP constant using different methodologies.

4.1. Moment equations

We derived regression equations for the first four
moments of the distributions as a function of n. The
guiding intuition behind the hypothesized function
was the upper bound equation derived by Few
(1955). The preliminary hypothesis for the different
moments is shown in Table 2. In this table, d is the
optimal tour distance obtained from the heuristic.
The coefficient terms that were statistically signifi-
cant were retained and the rest were discarded.
The final hypothesis is shown in Table 2. Also the
hypothesis Hy, is presented, which is the hypothesis
having no intercept term. The validation was done
using the standard procedures involving the behav-
ior of residuals.

Using the regression equations generated from
different samples we produced an estimate of the

Table 2
Hypothesized regression equations for moments
E(d) Ed) Bd) E(d)
Ho,: (initial) Bo+ Bivn Bo + Biv/n+ Ban Bo + Biv/n+ Bon + Byn? Bo + Bin/n+ Bon + Byn? + Pyn?
Hy,: (final) Bo+ Bivn Bo+ Pin Bo+ pin*? Bo + B
Hoy: Bivn Bin B B’
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parameters of the line. Averaging this with the
entire set of data gives E(f8), which due to the unbi-
ased property of the optimized least square estima-
tor is an estimate of 5. A similar approach was used
for all the moment equations. Finally, ¢-tests and
F-tests were used to verify the hypothesis. Results
were also obtained with the additional constraint
of setting the intercept equal to zero. These results
are important as they help us estimate the value of
the TSP constant. The regression equations were
also obtained for Rectilinear distances as well as
for the Held—Karp (HK) lower bound.

The results of the analysis are presented in the
following order. Tables 3 and 4 show the results
for the TSP tour lengths based on runs for both
the Euclidean as well as the Rectilinear tour lengths,
respectively. Regression results based on the Hy
and H, are shown in Tables 3 and 4. The 95% con-
fidence interval for each coefficient is also reported.

Table 3(a)

Regression for Euclidean TSP tour length

TSP-Euclidean  E(d) E(d?) E(d) E(d
Hypothesis H()] H()] H()] Hm

Po: 0.66268  4.179435 28.33828  186.2417
pri: 0.710301  0.55803 0.432637 0.344446
Po-Lower 95%  0.661689 4.172579 28.27833  185.6856
Po-Upper 95%  0.66 4.19 28.4 186.80
pi-Lower 95%  0.71017  0.55795 0.43257 0.34439
p1-Upper 95%  0.710428 0.558115  0.432707 0.344506
Table 3(b)

Regression for Rectilinear TSP tour length

TSP-Rectilinear  E(d) E(d%) E(d) E(d*)
Hypothesis Hoy Hy, Hy, Ho,

Po: 0.764621 5.856592 61.26064  438.7929
pr: 0.892139 0.876018  0.848252 0.813122
fo-Lower 95%  0.762918 5.841595 60.85072  436.8275
fo-Upper 95%  0.766324 5.871589 61.67057  440.7583
pr-Lower 95%  0.891373  0.87529 0.847524 0.812382
p1-Upper 95%  0.892904 0.876745  0.84898 0.813862
Table 4(a)

Regression for Euclidean TSP tour length — zero intercept
TSP-Euclidean  E(d) E(d) E(d) E(dY
Hypothesis Hy, Hy, Hy, Ho

Po: 0 0 0 0

pri: 0.788236  0.6007 0.455424  0.344004
pr-Lower 95%  0.78818 0.60064  0.45537 0.34395
p1-Upper 95% 0.788289  0.60076  0.455481  0.344054

Table 4(b)

Regression for Rectilinear TSP tour length — zero intercept
TSP-Rectilinear  E(d) E(d) E(d) E(dY
Hypothesis Hp, Hp, Hp Hop,

Po: 0 0 0 0

pr: 0.982307 0.938436  0.890462  0.840627
p1-Lower 95% 0.98182 0.937841  0.883821  0.839948
p1-Upper 95% 0.982794  0.93903 0.891104  0.841305

The R-square value for all the regressions is very
high with values of 99% for E(d), 98.5% for E(d?),
98% for E(d’) and around 97% for E(d*). The F sta-
tistic value and the z-statistic values confirm the
validity of the regression equation as well as the
coefficients of the various terms.

The results show that the confidence intervals for
the slope co-efficient are small for all cases. On con-
straining the constant term of the regression to be
zero, we see a marked increase in the value of the
slope. We expect this to fall gradually with increase
in the value of n and asymptotically approach the
TSP constant.

We also report the results obtained by regressing
the HK lower bound. The results clearly follow the
same pattern. It can be seen from the lower bound
results that the heuristic on average gives good solu-
tions. This validates the results of the heuristic. The
average lower bound results are presented in Table

4.2. Distribution fitting

Our preliminary study of the distribution with
the help of Stat::Fit® yielded four competing distri-
butions namely Beta, Weibull, Normal and Lognor-
mal. In almost all cases the Beta distribution was
ranked as the best fitting distribution. The Lognor-
mal seemed to be a good fit for smaller values of n
while the Normal distribution was a good fit for
larger values. Therefore we hypothesized a Beta

Table 5(a)

Regression for Euclidean TSP lower bound

TSP-Euclidean  E(d) E(d) E(d) E(d*
Hypothesis Hy, Hy, Ho, Ho,

Po: 0.69026  4.28946  28.926 209.0146
P 0.701594 0.547869  0.420944 0.320253
Po-Lower 95%  0.689286 4.282677 28.86671 208.432
Bo-Upper 95%  0.69 43 28.99 209.60
pi-Lower 95%  0.70147  0.54778 0.42088 0.32020
pi-Upper 95%  0.701716  0.547953  0.42101 0.320307
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Table 5(b) Table 6(a)
Regression for Rectilinear TSP lower bound Number of rejections Euclidean TSP
TSP-Rectilinear  E(d) E(d) E(d®) E(dY Euclidean
HypOthCSiS Hy, Hoy, Hy, Hy, k K-S A-D
Po: 0.796068 5.838576 49.63161  436.6565 Confidence level Confidence level
P 0.882094 0.861779  0.827842 0.789298 0.1 0.05 0.1 0.05
Po-Lower 95%  0.794341 5.823986 49.47149  434.7043
Bo-Upper 95%  0.797795 5.853166 49.79173  438.6087 400 11.375 5.625 11.5 5.5
Bi-Lower 95%  0.881878 0.861054  0.827122  0.789098 425 10.125 5.375 10.625 5.125
B1-Upper 95%  0.882309 0.862504  0.828562  0.789498 450 9.375 5.375 9.625 4.125
475 8.75 4.75 9.125 3.5
.500 8.75 4.625 8.25 3.375
.525 8.25 4.625 7.25 3.125
Table 5(c)
R ion for Euclid TSP 1 bound int ¢ .550 8.625 4.75 7 3
egression Ior Euchidean Oower bound — Ze€ro 1ntercep 575 775 4.5 6.375 2.875
TSP-Euclidean  E(d) E(dP) E(d?) E(d .600 7.875 4.125 6.125 2.75
HypOtheSiS Hy, Hy, Hy, Hy,
Po: 0 0 0 0
P 0.782162  0.591662  0.443509  0.331921 Table 6(b)
p1-Lower 95%  0.78211 0.59160 0.44345 0.33187 Number of rejections Rectilinear TSP
p1-Upper 95% 0.782215  0.591722  0.443564  0.331968 Rectilinear
k K-S A-D
Table 5(d) Confidence level Confidence level
Regression for Rectilinear TSP lower bound — zero intercept 0.1 0.05 0.1 0.05
TSP-Rectilinear  E(d) E(d) E(d) E(d* 400 6.75 3 6.5 2.75
X 425 6.75 2.75 5.75 2.5
Hypothesis Hy, Hy, Hy, Hy, 450 7 3 575 5
Bo: 0 0 0 0 475 7.25 3.25 5.5 2
P 0.970203  0.927078  0.869531  0.81631 .500 7.75 3.5 5.25 2
Br-Lower 95% 0.969702  0.926485 0.868889  0.816461 525 7.25 4 5 2
p1-Upper 95% 0.970704  0.927671  0.870172  0.816802 .550 7.5 3.75 5.25 2
575 8 4 5.5 2.5
.600 8.5 4 5.25 2

distribution for the TSP distances. As discussed ear-
lier we used scaled values to fit Beta distributions in
the range (0,1). We systematically searched the
interval between u+ 3¢ and Few’s bound for the
value that gave the best fit. Partial results for this
process are given in Table 5. Surprisingly, we found
that the same value of 0.525 gave the best results for
both the Rectilinear and the Euclidean cases.

The results of the K-S tests and the A-D tests are
reported in Table 6. The average number of errors
for each set of data is reported. The table lists the
results for both alpha values of 0.05 and 0.1.

On further breaking down the number of rejec-
tions into different runs we obtain the following
result (Figs. la and 1b).

Figs. 1a and 1b report the number of rejections
for the K-S and A-D test for different values of
alpha on the ordinate axis and the sample number
on the abscissa. The number of different points that
were considered was 81 for the Euclidean case and
80 for the Rectilinear case. It can be seen from

Fig. la that E (4) and E (5) had considerably high
rejections as compared to the others. However, the
addition of more sample points led to a considerable
reduction in the number of rejections. Fig. 1b on the
other hand is more consistent. It can be seen that
more runs were done for the Euclidean than Recti-
linear owing to the time intensive nature of each
TSP run (Table 7).

Once the adjustment factor has been defined, the
next step is to define the various parameters of the
Beta distribution. Our aim is to come up with a
function for the shape parameters in terms of n.
To do this we hypothesize the shape parameters to
be linear functions of n. We test the hypothesis by
performing a linear regression on the different val-
ues of o; and a,. The results are shown in Table 6.

From the table it can be seen that the R-square
values are very high and the null hypothesis is
clearly accepted. We also report the confidence
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Table 7
Regression equations for the parameters of the Beta distribution
Shape Euclidean Rectilinear
PAMEIETS 5 ) ) wmm) ()
Hy: Po+PBin  Po+pin Potpin  Pot Pin
Po: —27.47423 —4.266975 —7.48185  5.34572
pr: 4304877  2.222080  2.968166  0.95796
fo-Lower 95% —29.1875  —4.89928  —8.531407 4.819218
Po-Upper 95% —25.761 —3.63467 —6.432288 5.872224
pi-Lower 95% 4.283617  2.214234  2.9547002 0.951209
p1-Upper 95% 4.326139  2.229927  2.9816322  0.964720
Poltstar) —31.9189 —13.4321 —-14.1918 20.21
Pi(tstar) 403.0229  563.67 438.821 282.33
F 162427.5  317729.2 192564.2  79709.5
R square 0.9995 0.9995 0.9995 0.9995
Adjusted 0.9995 0.9995 0.9995 0.9995

R square

intervals for each coefficient. Due to the sensitivity
of the coefficients we have reported certain coeffi-
cients up to five decimal places. The equations show
that there is a clear relationship between the shape
parameters and n.

The regression equations give the parameters for
a scaled Beta distribution in the range [0,1]. To
recover the actual distribution we have to scale this
distribution by calculating the upper bound. Recall
the discussion in the previous section where we cal-
culated the value of the upper bound as

Upperbound = bgey — 0.525 # (bpew — pt — 30),

where bpew = V21 + 1.75 and p and ¢° can be esti-
mated by E(d) and E(d®) — (E(d))* respectively.
The variance keeps decreasing as n increases and
E(d®) — (E(d))* occasionally gives a small negative
value as n becomes very large. In such cases, one
can simply assume that the variance is 0. This is
consistent with the finding of Johnson et al.

(1996). It is important to note this is due to the fact
that we are forecasting these values based on regres-
sion and the regression fit is probably not very accu-
rate for very large value of n.

Example:. Consider n = 26. The scaled Beta distri-
bution parameters are given by

o = —27.47423 + 4.304877 x 26 = 84.45257
and
oy = —4.266975 + 2.22208 x 26 = 53.50711.

Moreover,

E(d) = 0.66268 + 0.710301v/26 = 4.284519,
and

E(d*) = 4.179435 4 0.55803 * 26 = 18.68822.

This gives an estimate for the variance equal to
0.3311. Few’s bound for this cases 1S bpey =
V2 x 26+ 1.75=28.9611. The upper bound for the
Beta distribution is therefore equal to Upperbound =
brew — 0.525 % (bpew — 1t — 30) =7.0274.

To estimate the optimal length of a random
Euclidean tour of 26 cities on a 1Xx 1 square, we
generate a Beta (84.45257, 53.50711) random var-
iate and multiply it by 7.0274.

4.3. The TSP constant

In this section, we present two different methods
for calculating the value of the TSP constant. In the
first method we calculate the (E(d)/+/n), where E(d)
is based on the results of the Monte Carlo simula-
tion. The value for n=2000 comes out to be
0.725341, which is expected to reduce further with
increase in the value of n. A similar calculation

KS-AD test results (Euclidean)
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Fig. la. Distribution fitting results for Euclidean TSP.
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KS-AD Results (Rectilinear)

Number of Rejections
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Fig. 1b. Distribution fitting results for Rectilinear TSP.

using the lower bound results gives the value of
(E(d)/+/n) to be 0.720192.

The actual values of the lower bound and the
TSP tour lengths for n = 2000, based on the simula-
tions results are 32.20798 and 32.43825, respec-
tively. The corresponding values obtained using
the regression equations are 32.42831 and 32.0665.
Therefore we see that the regression equation pre-
dicts the actual data within 1% of accuracy for both
the lower bound as well as the TSP tour lengths.

The second method to calculate the TSP constant
involves the use of the regression equation for E(d).
For the Euclidean TSP, we have lim,_ . E(d)/\/n =
lim, .., (0.66268 + 0.710301 * /n)//n = 0.710301.
This is very close to the value of 0.7124 4+ 0.002 esti-

® Heuristic tour length
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TSP constant
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L 2
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= | 0.
E 073 ey,
g me
T 0.725 | " \..,““
w
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0.71 T T T
0 1000 2000 3000 4000

number of points

Fig. 2. TSP Constant for Euclidean TSP.

mated by Johnson et al. (1996). Indeed, the 95%
confidence interval for our TSP constant is
[0.71017,0.710428] which overlaps with that
obtained by Johnson et al. Our calculation is some-
what smaller mainly because the regression equa-
tions are biased towards giving a good fit for
smaller values of n and the intercept of the regres-
sion equation plays a big role in this. As is apparent
from Table 4(a) the value for ff;, which gives the
TSP constant, is much larger if we use a zero-inter-
cept. The corresponding constant for the lower
bound is 0.7016. For the Rectilinear tour lengths
the corresponding values are 0.8921 and 0.882,
respectively. Figs. 1 and 2 plot the values of
(E(d)/+/n) for the Euclidean and Rectilinear cases,
respectively Fig. 3.

It should be noted here that the difference
between the lower bound values of the TSP tour
lengths and the tour lengths as obtained by the heu-

& Heurisitc tour length
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Fig. 3. TSP constant for Rectilinear TSP.
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ristic, is very small showing that good solutions are
obtained by the heuristic.

5. Conclusions

In this paper we derive empirical probability dis-
tributions for optimal traveling salesman tour
lengths. The city locations are assumed to be drawn
from a uniform 1 x 1 grid. We give regression equa-
tions to estimate the first four moments of the distri-
bution as well regression equations to estimate the
parameters of the Beta distribution. Our results
indicate excellent fit of the proposed Beta distribu-
tions as well as all regression equations. These
results can be used to speed up simulations involv-
ing traveling repair persons and to provide first
and second moments for the calculation of expected
service times in traveling repair person models. To
our knowledge, this is the first comprehensive study
of the distribution of optimal tour lengths.
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